POWER PLANT ENGINEERING

Course Code	19ME4702A	Year	IV	Semester	I	
Course Category:	Program Core	Branch	ME Course Type		Theory	
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Cours	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	CO1 Describe various energy sources and combustion processes in steam power L				
	plants.				
CO2	Classify diesel and gas turbine power plants layout with auxiliaries.				
CO3	Relate hydro projects classifications, fusion and fission reactions in nuclear L2				
	power plants and types of reactors.				
CO4	Estimate the advantages of combined working of different power plants and L3				
	importance of measurement and instrumentation in power plant.				
CO5	Explain the concepts of power plant economics and impact of its effluents on L2				
	environment.				

Course Articulation Matrix:

	Co	ontrib									of Prog m, 1:Lo	_	utcom	ies &
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				1							2	1
CO2	3	3				2							2	2
CO3	3	3				2							2	3
CO4	3	3				1							2	2
CO5	3	3				2							2	1

Course Content		
UNIT-1	INTRODUCTION TO THE SOURCES OF ENERGY: Resources and Development of Power in India. STEAM POWER PLANT: Plant Layout, Working of different Circuits, Fuel and handling equipments, types of coals, coal handling, choice of handling equipment, coal storage, Ash handling systems. COMBUSTION PROCESS: Properties of coal – overfeed and underfeed fuel beds, traveling grate stokers, and spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and draught system, Dust collectors, cooling towers and heat rejection, dearation. Corrosion and feed water treatment.	CO1
UNIT-2	DIESEL POWER PLANT: Introduction – IC Engines, types, construction—Plant layout with auxiliaries – fuel supply system, air starting equipment, lubrication and cooling system – super charging, application and comparison with other plants.	CO2

	GAS TURBINE POWER PLANT: Introduction – classification -	
	construction – Layout with auxiliaries – Principles of working of closed and	
	open cycle gas turbines. Combined Cycle Power Plants and comparison,	
	Permanence evaluation of the gas turbine plant.	
UNIT-3	HYDRO ELECTRIC POWER PLANT: Water power – Hydrological cycle /	CO3
	flow measurement – drainage area characteristics – Hydrographs – storage	
	and Pondage – classification of dams and spill ways. HYDRO PROJECTS	
	AND PLANT: Classification – Typical layouts – Site selection of hydro plant	
	- plant auxiliaries – plant operation pumped storage plants.	
	NUCLEAR POWER PLANT: Fusion and fission Reactions, Nuclear fuel –	
	breeding and fertile materials – Nuclear reactor – reactor operation, Fuel	
	moderator and coolant. TYPES OF REACTORS: Pressurized water reactor,	
	Boiling water reactor, sodium graphite reactor, fast Breeder Reactor,	
	Homogeneous Reactor, Gas cooled Reactor, Radiation hazards and shielding	
	– radioactive waste disposal.	
UNIT-4	HYBRID POWER PLANTS: Introduction, Advantages of combined	CO4
	working, Load division between power stations, Storage type hydro-electric	
	plant in combination with steam plant, Run off River plant in combination	
	with steam plant, Pump storage plant in combination with steam or Nuclear	
	power plant, Coordination of hydro electric and gas turbine stations,	
	coordination of hydroelectric and Nuclear power stations, coordination of	
	different types of Power plants.	
	POWER PLANT INSTRUMENTATION AND CONTROL: Importance of	
	measurement and instrumentation in power plant, measurement of water	
	purity, Gas analysis, O2 and CO2 measurements, measurement of smoke and	
UNIT-5	dust, measurement of moisture in CO2 circuit, Nuclear measurements. POWER PLANT ECONOMICS AND ENVIRONMENTAL	CO5
UN11-5	CONSIDERATIONS: Capital cost, investment of fixed charges, operating	CUS
	costs, cost per KWh, general arrangement of power distribution, Load curves,	
	load duration curve. Definitions of connected load, Maximum demand,	
	demand factor, average load, load factor, diversity factor – related exercises.	
	Effluents from power plants and Impact on environment – pollutants and	
	pollution standards – Methods of Pollution control.	
	ponduon standards internous of Fonduon control.	

	Learning Resources
Text	A Course In Power Plant Engineering by – Arora and Domkundwar, Dhanpatrai
Books:	& co.2011.
	2.Power Plant Engineering, by P.K.Nag, TataMcHill-2008.
Reference	1.A Text Book of Power Plant Engineering, by R K Rajput, Lakshmi
Books:	Publications, 2008.
	2.Power Plant Engineering, by P.C.Sharma, S.K.Kataria Publications, 2009.
	3. Power plant Engineering, by Ramalingam, Scietech Publishers-2010.
	4.An Introduction to Power Plant Technology, by G.D. Rai, Khanna
	publications-1996.
E-	https://nptel.ac.in/courses/112/107/112107291/
Resources	
& other	
digital	
Material:	